Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 185: 108538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422875

RESUMO

Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).


Assuntos
Água Potável , Engenharia Sanitária , Abastecimento de Água , RNA Ribossômico 16S/genética , Microbiologia da Água , Bactérias/genética , Biofilmes , Aço , Água Potável/microbiologia
2.
Sci Total Environ ; 903: 166201, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567290

RESUMO

The spatial distribution and heterogeneity of forest canopy elements reveal the fundamental dimensions of plant structure variations. Forests characterized by greater structural complexity and diversity intercept solar radiation more effectively, directly influencing the thermal environment and energy balance of the canopy. However, the axes of variation in the distribution and heterogeneity of the canopy remain largely unknown, which limits our understanding of how structural diversity responds to canopy temperature variability. Here, we derived a set of structural diversity metrics from a dataset of canopy structure measurements obtained using unmanned aerial vehicle-light detection and ranging across major forest communities in an urban area in 2021 and 2022. We also explored the key axes of structural diversity variability and tested their predictive power for canopy temperature. The results showed that: (1) most of the variability within structural diversity (83.6 % and 81.8 %) was captured by the three key axes in 2021 and 2022. The first axis was primarily driven by structural heterogeneity, representing the heterogeneity of vegetation distribution within the canopy. The second axis was primarily influenced by the interaction between height and cover/openness, indicating the vertical structure and horizontal distribution pattern of the canopy. The third axis represented the horizontal coverage and density of the canopy. (2) In both 2021 and 2022, the second axis was identified as the most influential predictor of canopy temperature, as evidenced by R2 values of 0.46 and 0.28, respectively. The model incorporating all three axes of structural diversity achieved the highest accuracy in predicting the canopy temperature for 2021 (R2 = 0.68, AIC = 81.35, ΔAIC = 0, and RMSE = 0.89). Prior research on canopy temperature prediction has overlooked the true potential of principal component axes derived from structural diversity. The findings present a novel approach for selecting structural diversity indicators for future investigation.

3.
Water Res ; 241: 120149, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270942

RESUMO

Premise plumbing plays an essential role in determining the final quality of drinking water consumed by customers. However, little is known about the influences of plumbing configuration on water quality changes. This study selected parallel premise plumbing in the same building with different configurations, i.e., laboratory and toilet plumbing. Water quality deteriorations induced by premise plumbing under regular and interrupted water supply were investigated. The results showed that most of the water quality parameters did not vary under regular supply, except Zn, which was significantly increased by laboratory plumbing (78.2 to 260.7 µg/l). For the bacterial community, the Chao1 index was significantly increased by both plumbing types to a similar level (52 to 104). Laboratory plumbing significantly changed the bacterial community, but toilet plumbing did not. Remarkably, water supply interruption/restoration led to serious water quality deterioration in both plumbing types but resulted in different changes. Physiochemically, discoloration was observed only in laboratory plumbing, along with sharp increases in Mn and Zn. Microbiologically, the increase in ATP was sharper in toilet plumbing than in laboratory plumbing. Some opportunistic pathogen-containing genera, e.g., Legionella spp. and Pseudomonas spp., were present in both plumbing types but only in disturbed samples. This study highlighted the esthetic, chemical, and microbiological risks associated with premise plumbing, for which system configuration plays an important role. Attention should be given to optimizing premise plumbing design for managing building water quality.


Assuntos
Engenharia Sanitária , Qualidade da Água , Microbiologia da Água , Abastecimento de Água , Pseudomonas
4.
J Comput Neurosci ; 49(2): 107-127, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595765

RESUMO

Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats-two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out-thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.


Assuntos
Modelos Neurológicos , Percepção da Dor , Animais , Giro do Cíngulo , Dor , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial
5.
IEEE Trans Neural Netw ; 20(6): 1050-4, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19435681

RESUMO

In this brief, we consider an online gradient method with penalty for training feedforward neural networks. Specifically, the penalty is a term proportional to the norm of the weights. Its roles in the method are to control the magnitude of the weights and to improve the generalization performance of the network. By proving that the weights are automatically bounded in the network training with penalty, we simplify the conditions that are required for convergence of online gradient method in literature. A numerical example is given to support the theoretical analysis.


Assuntos
Algoritmos , Modelos Teóricos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...